zh

姓名格式错误

公司名称格式错误

数据堂严格遵守用户隐私条款,您所填写的信息我们会严格保密,请放心填写~

基于RNN的图像分割

来源: 数据堂

基于深度学习的图像分割:RNN的图像分割

Recurrent neural networks(RNNs)除了在手写和语音识别上表现出色外,在解决计算机视觉的任务上也表现不俗,在本篇文章中我们就将要介绍RNN在2D图像处理上的一些应用,其中也包括介绍使用到它的结构或者思想的一些模型。

RNN是由Long-Short-Term Memory(LSTM)块组成的网络,RNN来自序列数据的长期学习的能力以及随着序列保存记忆的能力使其在许多计算机视觉的任务中游刃有余,其中也包括语义分割以及数据标注的任务。接下来的部分我们将介绍几个使用到RNN结构的用于分割的网络结构模型:

1.ReSeg模型

ReSeg可能不被许多人所熟知,在百度上搜索出的相关说明与解析也不多,但是这是一个很有效的语义分割方法。众所周知,FCN可谓是图像分割领域的开山作,而RegNet的作者则在自己的文章中大胆的提出了FCN的不足:没有考虑到局部或者全局的上下文依赖关系,而在语义分割中这种依赖关系是非常有用的。所以在ReSeg中作者使用RNN去检索上下文信息,以此作为分割的一部分依据。

该结构的核心就是Recurrent Layer,它由多个RNN组合在一起,捕获输入数据的局部和全局空间结构。

优缺点:

充分考虑了上下文信息关系;

使用了中值频率平衡,它通过类的中位数(在训练集上计算)和每个类的频率之间的比值来重新加权类的预测。这就增加了低频率类的分数,这是一个更有噪声的分割掩码的代价,因为被低估的类的概率被高估了,并且可能导致在输出分割掩码中错误分类的像素增加。

 
2.MDRNNs(Multi-Dimensional Recurrent Neural Networks)模型

传统的RNN在一维序列学习问题上有着很好的表现,比如演讲(speech)和在线手写识别。但是 在多为问题中应用却并不到位。MDRNNs在一定程度上将RNN拓展到多维空间领域,使之在图像处理、视频处理等领域上也能有所表现。

该论文的基本思想是:将单个递归连接替换为多个递归连接,相应可以在一定程度上解决时间随数据样本的增加呈指数增长的问题。以下就是该论文提出的两个前向反馈和反向反馈的算法。

 


本文转载自网络:如有侵权请联系删除

18

339